Frontiers | Clinical efficacy and safety of rimegepant in the treatment of migraine: a meta-analysis of randomized controlled trials (2024)

Introduction

Migraine is one of the most common causes of severe headaches in the world (1). People who suffer from frequent migraines may lose more than half their lives because of migraines (2). Migraine has been listed as the second most common disabling disorder worldwide by the Global Burden of Disease Study (GBD) lately and first among young women (36). Currently, there is no cure for migraine, only symptom control. For the treatment of acute attacks, over-the-counter medications such as ibuprofen are available, mostly non-specific, and among the specific prescription drugs, triptans are the more common choice (7). Introduced in the 1990s, triptans are targeted but not effective for everyone because of their vasoconstrictive effect and are not indicated for people with cardiovascular disease or associated risk factors (8, 9). Calcitonin gene-related peptide (CGRP) is a neurotransmitter with vasodilatory effects. CGRP and its receptors are expressed in neurological regions associated with migraine pathophysiology. During migraine attacks, the level of CGRP release is significantly elevated and is considered to be an important trigger of migraine (10). Furthermore, the procedure does not cause any other vasoconstriction. Thus, inhibition of the CGRP signaling pathway is a novel mechanism of action for the acute treatment of migraine, and the CGRP receptor is now a popular target for migraine drug development (11, 12).

There are several monoclonal migraine drugs targeting the CGRP receptor that have been marketed worldwide (10). In 2018, the U.S. Food and Drug Administration (FDA) approved three migraine prevention drugs targeting CGRP itself or its receptor, all injectable. Rimegepant is an oral CGRP receptor antagonist with a more convenient dosing regimen (12).

Recently, the FDA expanded the indication for rimegepant to be used for the prophylactic treatment of migraine in adults and approved it as the first CGRP receptor antagonist to be approved as an efficacious orally disintegrating tablet for the acute treatment of migraine in adults with or without aura. The drug is currently the only migraine medication that both treats acute migraine attacks and helps prevent future attacks. But some scholars believe that rimegepant is the new garment of the emperor because of the lack of study patients (13).

Thus, we will increase the number of studies based on the existing studies and conduct a meta-analysis of the efficacy of rimegepant to obtain a more realistic clinical efficacy of rimegepant, while meanwhile assessing the effect of the treatment dose on migraine control and adverse effects. Our study summarizes efficacy and safety studies from multiple randomized controlled trails, offsetting the lag caused by the number of patients included.

Methods

Study search and selection

We followed the PRISMA guidelines throughout the formation process of our study. We searched PubMed, Embase, and the Cochrane Library. The following search terms were used: “Rimegepant” (Supplementary Concept) OR BMS-927711 Studies were included if they met the following criteria: (a) the RCT; (b) patients had a history of migraine for at least 1 year before the age of 50, 2–8 moderate or severe migraine attacks per month, and <15 days per month for the previous 3 months; (c) the intervention of rimegepant and comparison with other medications to treat migraines; and (d) the outcome of efficacy, including pain relief 2 h after administration and AEs. All languages of publication could be included. However, studies were excluded if they met the following criteria: (a) in vitro studies; (b) pharmaco*kinetic-pharmacodynamic assessment; (c) review and abstract; and (d) phase I trials. Two reviewers (Qinghui Wang and Fei Lin) searched and examined publications independently to avoid bias. A third reviewer (Yi Zhu) resolved and decided on any disagreements. The following data were extracted from all the included studies: authorship, year of publication, study design, study duration, study site, study population, participants and comparators, clinical outcomes, and risk of adverse events (AEs). The modified intent-to-treat (MITT) population included all ITT patients with a confirmed diagnosis and conditions that met the study protocol criteria. The clinically evaluable (CE) population included patients from the MITT population who had a qualifying symptom as per the criteria for trial entry, received a trial drug, did not receive any medication not assigned within the trial that could confound interpretation of the results, and had an assessment of outcome during the protocol-defined window. Our institute did not require ethical approval for systematic reviews and meta-analyses.

Outcome measurement

We observed several indicators of pain free and pain relief to better describe the efficacy. Including migraine pain free at 2 h, without the use of rescue medication; the second set of endpoints included migraine relief at 2 h without the use of rescue medication. Then we, respectively, assessed sustained pain free and relief at 2–24 h and sustained pain free and relief from the most bothersome symptom (MBS) at 2–48 h. We screened the articles and assessed the results as per the guidelines (14). Treatment-emergent adverse events (TEAEs) were recorded, regardless of causality.

Data analysis

The Review Manager 5.2 software was used to create the risk of bias plot in individual studies. And the Cochrane risk-of-bias tool was used to assess the quality of the included RCTs and their associated risk of bias. Statistical analyses were performed with the fixed-effects model. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for outcome analyses. The degree of heterogeneity was evaluated with the Chi-squared test. The proportion of statistical heterogeneity was assessed using the I2 measure. Heterogeneity was considered significant when P < 0.10 or I2 > 50%. The random-effect model was used when the data were significantly heterogeneous, and the fixed-effect model was used when the data were hom*ogeneous. First, analyze the causes of heterogeneity. Subgroup analysis, sensitive analysis, Breslow-Day, and regression approximation can be used for factors that may produce clinical and statistical heterogeneity. If the heterogeneity cannot be eliminated after excluding interference factors, a random effect model (REM) can be selected for pooled data analysis. Combined odds ratios (OR) and 95% confidence intervals (CIs) were calculated for outcome analyses.

Results

Search and study characteristics

A total of 688 research articles and abstracts from Pubmed, Embase, and the Cochrane Library were identified. One hundred and eight studies were removed due to duplicates. After removing duplicates and uncorrelated titles, eleven of these articles were directly related to the topic of interest. There are seven full-text articles excluded, with reasons as follows: same study (n = 3), single group study (n = 2), and inconsistent outcome measures (n = 2). Finally, four RCTs containing 4,230 patients were included in our meta-analysis. The specific process and included study characteristics are shown in Figure 1.

FIGURE 1

Figure 1. The study search, selection, and inclusion process.

Basic characteristics of the included studies and risk of bias evaluation result

We summarized the basic characteristics of included studies in the order of publication years, and them are listed in Table 1.

TABLE 1

Table 1. Basic characteristics of included studies.

These studies were all registered with ClinicalTrials.gov, and their numbers were listed in the table. The basic characteristics showed that the average age of the patients in the four studies showed no distinct difference; they were all around 40 years old, with more women than men. The Cochrane risk-of-bias tool was used to assess the risk of bias in our study, and the detailed results are shown in Figures 2, 3.

FIGURE 2

Figure 2. Bias evaluate in the meta-analysis.

FIGURE 3

Figure 3. Bias analysis in the meta-analysis.

Clinical efficacy of rimegepant in the treatment of migraine

Rimegepant, one of the CGRP small molecule antagonists, has been extensively studied in terms of in vivo absorption, and drug concentration (18). Multiple indicators showed that rimegepant was more effective than placebo in our study. The meta-analysis found that rimegepant outperformed placebo in terms of pain freedom at 2 h post-dose [OR = 1.84, 95% CI (1.55, 2.18)] and pain relief at 2 h post-dose [OR = 1.80, 95% CI (1.59, 2.04)]. Moreover, rimegepant had better effects than placebo in patients who were pain free at 2–24 h post-dose [OR = 2.44, 95% CI (1.98, 3.02)], pain relief patients at 2–24 h post-dose [OR = 2.1, 95% CI (1.85, 2.40)], pain free at 2–48 h post-dose [OR = 2.27, 95% CI (1.82, 2.84)], and pain relief at 2–48 h post-dose [OR = 1.92, 95% CI (1.66, 2.23)]. The detailed results of patients with pain freedom at 2 hours, 2–24 hours, and 2–48 hours post-dose are listed in Figure 4, and pain relief after these time are listed in Figure 5.

FIGURE 4

Figure 4. Forest of patients with pain freedom (A: 2 h post-dose; B: 2–24 h post-dose; C: 2–48 h post-dose).

FIGURE 5

Figure 5. Forest of patients with pain relief (A: 2 h post-dose; B: 2–24 h post-dose; C: 2–48 h post-dose).

Clinical safety of rimegepant in the treatment of migraine

Four RCTs reporting treatment-associated adverse events associated with therapy. We summarized the overall number of adverse events in the experimental group vs. the placebo group and performed a meta-analysis of the experimental results. The results showed that there was no significant difference between the occurrence of adverse reactions in the experimental and control groups [OR = 1.29, 95% CI (0.99, 1.67), P = 0.06] (Figure 6). Then we tested for the most common side effects found in previous studies, such as nausea, dizziness, and urinary tract infections. Among them, the experimental group showed significant differences in nausea compared with the placebo group (P = 0.03) but no significant difference in dizziness or urinary tract infection. As side effects, reported adverse events include vomiting, diarrhea, paresthesia, dysgeusia, chest discomfort, myalgia, etc. (15).

FIGURE 6

Discussion

In this study, we included a total of 4 RCT studies, including 4,230 patients. In February 2020, rimegepant received its first global approval in the USA for the acute treatment of migraine (aura) in adults (19). So we assessed the effect of rimegepant on migraine control and safety in clinical use. Baseline data indicate that the proportion of female and middle-aged patients is large, consistent with the data reported by GBD (6). Previous pharmacotherapy for acute migraine focused on short-term treatment, focusing on pain freedom 2 h post-dose (18). However, for patients with severe migraine, the evaluation index of 2-h remission inevitably leads to a deviation in the results. Therefore, we included pain free and relief as the primary outcome and increased the time from the previous 2 h to 2–48 h.

Our results indicate that in terms of efficacy, both for 2 h, 2–24 h, 2–48 h post-dose symptom-free and relief, the efficacy of the rimegepant is significantly different from that of the placebo. One study (15) has shown that compared to triptans, the therapeutics effect of rimegepant is limited, but it is still an optional medicine for taboo patients, such as patients with cardiovascular patients. For the migraine control effect achieved by long-term drug treatment, Johnston et al. (20) find monthly migraine days in rimegepant change from baseline is reduced by 3.31 days [95% CI (3.75, −2.87)] in 4 – 14 MMD QOD 1 + PRN. According to Croop et al. (21), monthly migraine days of rimegepant reduce by 4.3 days [95% CI (4.8, 3.9)] and of placebo, by 3.5 days (−4.0, 3.0). In addition, rimegepant reduced lost productivity time due to migraine by 50%. Rimegepant acts as a CGRP antagonist for systemic administration and has shown efficacy in pain freedom and relief, migraine symptom release, and lifestyle recovery (22). We further find out the role of the neuropeptide CGRP in the pathophysiology of migraine, CGRP is the most potent vasodilating peptide known (23), but it has a limited ability to cross the blood-brain barrier (BBB) (24). In the meninges, CGRP may promote neurogenic inflammation by triggering the release of neuronal sensitizers by mast cells, which subsequently leads to increased dural vasodilation (25). Regulation of meningeal neuronal activity can trigger a feedback loop which eventually leads to peripheral sensitization of nocicepters (26).

In terms of adverse reactions, the most common adverse effects of rimegepant were vomiting, dizziness, and urinary tract infections. We find no significant difference between the occurrence of adverse reactions in the rimegepant group and the control groups. For several adverse events commonly reported, nausea was significantly different from the control group; dizziness and urinary tract infection were not different compared with the control group, and previous research did not show any effect on liver function.

Our advantage is that we simultaneously evaluated the efficacy of pain free and pain relief after rimegepant 2 h, 2–24 h, and 2–48 h post-dose, reducing the possible errors of assessing pain free after 2 h alone. Meanwhile, we evaluated the role of long-term time-based quantitative use for migraine prophylactics, and several studies showed that long-term timed use of rimegepant contributed to the number of fewer migraine attacks per month.

Of course, there are also some limitations in this paper. Our study was not the first meta-analysis, and we didn't register, but the number of patients and studies has increased significantly in comparison to previous research. This study did not contain other anti-CGRP drugs or compare the efficacy of rimegepant with other drugs. Studies have shown that anti-CGRP monoclonal antibodies are also effective, safe, and well-tolerated drugs (27). When developing medicines, several aspects should be taken into account, as there are medicines with different mechanisms.

Migraine is highly associated with disability (28). It is currently believed that patients with more frequent and severe migraines will benefit from prophylactic treatment. Modern medical treatment should consider not only the patient's symptoms, diagnosis, and comorbidities but also the patient's expectations (29). Preclinical data and clinical models of migraine are the basis for developing therapeutic agents (30). Our current systematic assessment and meta-analysis primarily assessed the efficacy and safety of randomized controlled trials in the treatment of migraine patients, providing evidence to support for clinical treatment.

Conclusion

In summary, our study confirms that rimegepant has better therapeutic effects compared to placebo and no significant difference in adverse events.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

QW and FL conceived and designed the study. QW, SW, YZ, and FL analyzed the data and wrote the manuscript. All authors reviewed and approved the final version of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Gawde P, Shah H, Patel H, Bharathi KS, Patel N, Sethi Y, et al. Revisiting migraine: the evolving pathophysiology and the expanding management armamentarium. Cureus. (2023) 15:e34553. doi: 10.7759/cureus.34553

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Borkum JM. Migraine triggers and oxidative stress: a narrative review and synthesis. Headache. (2016) 56:12–35. doi: 10.1111/head.12725

PubMed Abstract | CrossRef Full Text | Google Scholar

3. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, national incidence prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. (2016) 388:1545–602. doi: 10.1016/S0140-6736(16)31678-6

PubMed Abstract | CrossRef Full Text | Google Scholar

4. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, national incidence. prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. (2017) 390:1211–59. doi: 10.1016/S0140-6736(17)32154-2

PubMed Abstract | CrossRef Full Text | Google Scholar

5. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, national incidence. prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. (2018) 392:1789–858. doi: 10.1016/S0140-6736(18)32279-7

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Steiner TJ, Stovner LJ, Jensen R, Uluduz D, Katsarava Z, Lifting H. The Burden: the Global Campaign against, Migraine remains second among the world's causes of disability, and first among young women: findings from GBD2019. J Headache Pain. (2020) 21:137. doi: 10.1186/s10194-020-01208-0

PubMed Abstract | CrossRef Full Text | Google Scholar

7. Mayans L, Walling A. Acute migraine headache: treatment strategies. Am Fam Phys. (2018) 97:243–51.

PubMed Abstract | Google Scholar

8. Dodick DW, Papademetriou V. Cardiovascular safety of triptans. Editorial. (2004) 24:513–4. doi: 10.1111/j.1468-2982.2003.00714.x

PubMed Abstract | CrossRef Full Text | Google Scholar

9. Chan KY, Labruijere S, Ramírez Rosas MB, de Vries R, Garrelds IM, Danser AH, et al. A Cranioselectivity of sumatriptan revisited: pronounced contractions to sumatriptan in small human isolated coronary artery. CNS Drugs. (2014) 28:273–8. doi: 10.1007/s40263-013-0136-0

PubMed Abstract | CrossRef Full Text | Google Scholar

10. Edvinsson L. CGRP and migraine: from bench to bedside. Rev Neurol. (2021) 177:785–90. doi: 10.1016/j.neurol.2021.06.003

PubMed Abstract | CrossRef Full Text | Google Scholar

11. Edvinsson L. Role of CGRP in migraine. Handb Exp Pharmacol. (2019) 255:121–30. doi: 10.1007/164_2018_201

PubMed Abstract | CrossRef Full Text | Google Scholar

12. de Vries T, Villalón CM, MaassenVanDenBrink A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol Therap. (2020) 211:107528. doi: 10.1016/j.pharmthera.2020.107528

PubMed Abstract | CrossRef Full Text | Google Scholar

13. Tfelt-Hansen P, Loder E. The emperor's new gepants: are the effects of the new oral CGRP antagonists clinically meaningful? Headache. (2019) 59:113–7. doi: 10.1111/head.13444

PubMed Abstract | CrossRef Full Text | Google Scholar

14. Tfelt-Hansen P, Pascual J, Ramadan N, Dahlöf C, D'Amico D, Diener HC, et al. Guidelines for controlled trials of drugs in migraine: third edition. A guide for investigators. Cephalalgia Int J Headache. (2012) 32:6–38. doi: 10.1177/0333102411417901

PubMed Abstract | CrossRef Full Text | Google Scholar

15. Marcus R, Goadsby PJ, Dodick D, Stock D, Manos G, Fischer TZ. BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia. (2014) 34:114–25. doi: 10.1177/0333102413500727

PubMed Abstract | CrossRef Full Text | Google Scholar

16. Croop R, Goadsby PJ, Stock DA, Conway CM, Forshaw M, Stock EG, et al. Efficacy, safety, and tolerability of rimegepant orally disintegrating tablet for the acute treatment of migraine: a randomised, phase 3, double-blind, placebo-controlled trial. Lancet. (2019) 394:737–45. doi: 10.1016/S0140-6736(19)31606-X

PubMed Abstract | CrossRef Full Text | Google Scholar

17. Lipton RB, Croop R, Stock EG, Stock DA, Morris BA, Frost M, et al. Rimegepant, an oral calcitonin gene-related peptide receptor antagonist, for migraine. N Engl J Med. (2019) 381:142–9. doi: 10.1056/NEJMoa1811090

PubMed Abstract | CrossRef Full Text | Google Scholar

18. Huang T, Xu Y, Chen Y, Bian J, Chu Z, Zhao S, et al. Efficacy and safety of calcitonin gene-related peptide antagonists in migraine treatment: a meta-analysis. Brain Behav. (2022) 12:e2542. doi: 10.1002/brb3.2542

PubMed Abstract | CrossRef Full Text | Google Scholar

19. Scott LJ. Rimegepant: first approval. Drugs. (2020) 80:741–6. doi: 10.1007/s40265-020-01301-3

PubMed Abstract | CrossRef Full Text | Google Scholar

20. Johnston KM, L'Italien G, Popoff E, Powell L, Croop R, Thiry A, et al. Mapping migraine-specific quality of life to health state utilities in patients receiving rimegepant. Adv Ther. (2021) 38:5209–20. doi: 10.1007/s12325-021-01897-2

PubMed Abstract | CrossRef Full Text | Google Scholar

21. Croop R, Lipton RB, Kudrow D, Stock DA, Kamen L, Conway CM, et al. Oral rimegepant for preventive treatment of migraine: a phase 2/3, randomised, double-blind, placebo-controlled trial. Lancet. (2021) 397:51–60. doi: 10.1016/S0140-6736(20)32544-7

PubMed Abstract | CrossRef Full Text | Google Scholar

22. Negro A, Martelletti P. Rimegepant for the treatment of migraine. Drugs Today. (2020) 56:769–80. doi: 10.1358/dot.2020.56.12.3211624

PubMed Abstract | CrossRef Full Text | Google Scholar

23. Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. (2014) 94:1099–142. doi: 10.1152/physrev.00034.2013

PubMed Abstract | CrossRef Full Text | Google Scholar

24. Edvinsson L, Warfvinge K. Recognizing the role of CGRP and CGRP receptors in migraine and its treatment. Cephalalgia. (2019) 39:366–73. doi: 10.1177/0333102417736900

PubMed Abstract | CrossRef Full Text | Google Scholar

25. Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med. (2011) 13:e36. doi: 10.1017/S1462399411002067

PubMed Abstract | CrossRef Full Text | Google Scholar

26. Messlinger K, Russo AF. Current understanding of trigeminal ganglion structure and function in headache. Cephalalgia. (2019) 39:1661–74. doi: 10.1177/0333102418786261

PubMed Abstract | CrossRef Full Text | Google Scholar

27. Castrillo A, Mendoza A, Caballero L, Cerdán D, Rodríguez MF, Guerrero P, et al. Effectiveness of anti-CGRP monoclonal antibodies in the preventive treatment of migraine: a prospective study of 63 patients. Med Clin. (2023) 160:341–6. doi: 10.1016/j.medcle.2022.09.024

PubMed Abstract | CrossRef Full Text | Google Scholar

28. Hoffman V, Xue F, Ezzy SM, Yusuf A, Green E, Eisele O, et al. Risk of cardiovascular and cerebrovascular events and mortality in patients with migraine receiving prophylactic treatments: an observational cohort study. Cephalalgia. (2019) 39:1544–59. doi: 10.1177/0333102419856630

PubMed Abstract | CrossRef Full Text | Google Scholar

29. Cheng F, Ahmed F. Onabotulinumtoxin A for the prophylactic treatment of headaches in adult patients with chronic migraine: a safety evaluation. Expert Opin Drug Saf. (2021) 20:1275–89. doi: 10.1080/14740338.2021.1948531

PubMed Abstract | CrossRef Full Text | Google Scholar

30. Sevivas H, Fresco P. Treatment of resistant chronic migraine with anti-CGRP monoclonal antibodies: a systematic review. Eur J Med Res. (2022) 27:86. doi: 10.1186/s40001-022-00716-w

PubMed Abstract | CrossRef Full Text | Google Scholar

Frontiers | Clinical efficacy and safety of rimegepant in the treatment of migraine: a meta-analysis of randomized controlled trials (2024)

FAQs

What is the success rate of rimegepant? ›

Treatment with 75 mg rimegepant showed significant efficacy compared to the placebo with respect to all of the primary outcomes (freedom from pain 2 hr post dose, 20.6% vs 12.5% for rimegepant vs placebo RR = 1.70, 95% CI:1.39–2.08, P < 0.001; freedom from most bothersome symptoms, 36.0% vs 25.1% for rimegepant vs ...

Does rimegepant cross the blood-brain barrier? ›

Rimegepant primarily acts in the peripheral nervous system and has shown a significantly higher affinity to peripheral CGRP receptors than central receptors. Rimegepant is thus able to antagonistically bind CGRP receptors located on the trigeminovascular system, which is localized outside of the blood-brain barrier.

How long does rimegepant take to prevent migraines? ›

Migraines are thought to be caused by the release of the protein calcitonin gene-related peptide, which builds up around the brain. Rimegepant works to stop the release of this protein and thus help reduce the migraine symptoms, ideally within a few hours.

What is the cost of rimegepant? ›

Prices
MedicationQuantityCost
Vydura 75mg (rimegepant)2 wafers£38.00
Vydura 75mg (rimegepant)4 wafers£66.50
Vydura 75mg (rimegepant)8 wafers£125.00
Vydura 75mg (rimegepant)16 wafers£245.00

What are the long term side effects of Nurtec? ›

What are the long-term side effects of Nurtec? As a migraine prophylactic, Nurtec is intended for long-term use for months, if not years. There are no side effects specifically due to prolonged use of rimegepant. Nurtec does not have any serious side effects that may have long-term consequences.

Does rimegepant cause weight gain? ›

Weight gain was not reported as a side effect in studies looking at the use of an oral dose of rimegepant (a different form than the Nurtec ODT) for the preventive treatment of migraine. In studies up to one year long, 603 patients received one 75 mg dose of rimegepant every other day.

What are the side effects of rimegepant? ›

Side Effects
  • Acid or sour stomach.
  • belching.
  • heartburn.
  • indigestion.
  • nausea.
  • stomach discomfort, upset, or pain.

Is rimegepant better than sumatriptan? ›

Comparing Rimegepant vs Sumatriptan

Rimegepant has an average rating of 6.3 out of 10 from a total of 308 ratings on Drugs.com. 52% of reviewers reported a positive effect, while 31% reported a negative effect. Sumatriptan has an average rating of 7.7 out of 10 from a total of 543 ratings on Drugs.com.

Are CGRP inhibitors safe? ›

CGRP is called a vasodilator because it helps the blood vessels dilate, which is important for good heart health; the peptide has also been shown to protect against heart failure and high blood pressure. The results from several clinical trials showed there doesn't appear to be an increased risk.

What is the new drug for migraines in 2024? ›

The final guidance on the use of atogepant for the prevention of migraine is due to be published on 15 May 2024.

What is the new NICE approved migraine treatment? ›

In final draft guidance published today NICE has recommended atogepant, the first of a new type of oral treatment option for preventing both chronic and episodic migraines, opening the way for up to 170,000 people to choose it on the NHS in England.

What is the new breakthrough for migraines? ›

(NYSE: PFE) today announced the U.S. Food and Drug Administration (FDA) has approved ZAVZPRET™ (zavegepant), the first and only calcitonin gene-related peptide (CGRP) receptor antagonist nasal spray for the acute treatment of migraine with or without aura in adults.

Is rimegepant a narcotic? ›

Rimegepant works by blocking CGRP receptors which offers an alternative treatment for those who experience inadequate efficacy, poor tolerability or have a contraindication to current acute therapies. Rimegepant is not an opioid and does not have addiction potential.

What is the best medication for migraines? ›

Triptans. Prescription drugs such as sumatriptan (Imitrex, Tosymra) and rizatriptan (Maxalt, Maxalt-MLT) are used to treat migraine because they block pain pathways in the brain. Taken as pills, shots or nasal sprays, they can relieve many symptoms of migraine.

Can you take rimegepant daily? ›

Adults—75 milligrams (mg) once a day. The dose is usually not more than 75 mg in a 24-hour period. Children—Use and dose must be determined by your doctor.

How successful is Nurtec? ›

In a study of people who either took Nurtec ODT or placebo to treat their migraine attacks, 21% (142/669) of Nurtec ODT patients experienced pain freedom at 2 hours compared to 11% (74/682) for placebo, and 35% (235/669) experienced freedom from their most bothersome symptom (selected from light sensitivity, sound ...

Does Nurtec work for everyone? ›

Lewis, “which can result in quicker relief and better pain relief for those who are having a hard time keeping medication down due to nausea.” Ultimately, though, you should always talk to your doctor about whether Nurtec is right for you. While it works for many people, it's not right for everyone—and Dr.

What is the duration of treatment for rimegepant? ›

Previous clinical trials have demonstrated that acute treatment with oral rimegepant 75 mg provides rapid (within 2 hours post-dose) and sustained (over 48 hours post-dose) relief from pain and other symptoms associated with migraine (eg, nausea, photophobia, phonophobia), and is safe and well tolerated when dosed for ...

References

Top Articles
Penn State remains strong in 2025 QS World University Rankings | Penn State University
Penn State 4th in US, 51st globally in 2024 Times Higher Education Impact Rankings | Penn State University
I Make $36,000 a Year, How Much House Can I Afford | SoFi
Research Tome Neltharus
Kokichi's Day At The Zoo
Es.cvs.com/Otchs/Devoted
Rainfall Map Oklahoma
Blue Ridge Now Mugshots Hendersonville Nc
What Does Dwb Mean In Instagram
How do you like playing as an antagonist? - Goonstation Forums
Oro probablemente a duna Playa e nomber Oranjestad un 200 aña pasa, pero Playa su historia ta bay hopi mas aña atras
Burn Ban Map Oklahoma
Grasons Estate Sales Tucson
Kürtçe Doğum Günü Sözleri
Hocus Pocus Showtimes Near Amstar Cinema 16 - Macon
Hollywood Bowl Section H
Gayla Glenn Harris County Texas Update
Quick Answer: When Is The Zellwood Corn Festival - BikeHike
Isaidup
The Tower and Major Arcana Tarot Combinations: What They Mean - Eclectic Witchcraft
kvoa.com | News 4 Tucson
Cpt 90677 Reimbursem*nt 2023
Lovindabooty
Temu Seat Covers
Spectrum Outage in Queens, New York
Bayard Martensen
Mjc Financial Aid Phone Number
Riverstock Apartments Photos
Craftsman Yt3000 Oil Capacity
Craigslist Texas Killeen
J&R Cycle Villa Park
Gasbuddy Lenoir Nc
Kagtwt
Where Do They Sell Menudo Near Me
Craigslist Hamilton Al
Seymour Johnson AFB | MilitaryINSTALLATIONS
The Mad Merchant Wow
Final Exam Schedule Liberty University
Jewish Federation Of Greater Rochester
Paperless Employee/Kiewit Pay Statements
The Banshees Of Inisherin Showtimes Near Reading Cinemas Town Square
303-615-0055
At Home Hourly Pay
Mynord
56X40X25Cm
Iupui Course Search
Vagicaine Walgreens
Oakley Rae (Social Media Star) – Bio, Net Worth, Career, Age, Height, And More
Urban Airship Acquires Accengage, Extending Its Worldwide Leadership With Unmatched Presence Across Europe
Hampton Inn Corbin Ky Bed Bugs
Metra Union Pacific West Schedule
Southern Blotting: Principle, Steps, Applications | Microbe Online
Latest Posts
Article information

Author: Prof. Nancy Dach

Last Updated:

Views: 6080

Rating: 4.7 / 5 (57 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Prof. Nancy Dach

Birthday: 1993-08-23

Address: 569 Waelchi Ports, South Blainebury, LA 11589

Phone: +9958996486049

Job: Sales Manager

Hobby: Web surfing, Scuba diving, Mountaineering, Writing, Sailing, Dance, Blacksmithing

Introduction: My name is Prof. Nancy Dach, I am a lively, joyous, courageous, lovely, tender, charming, open person who loves writing and wants to share my knowledge and understanding with you.